Lambda Functions Caching mechanism

A.T.M Ruhul Amin
6 min readOct 16, 2022

--

The goal of the package is to provide a simple interface for caching, built specifically for AWS Lambda.

lambda-cache helps you cache data in your Lambda function from one invocation to another. It utilizes the internal memory of the lambda function’s execution context to store data across multiple invocations, which:

  • Reduces load on back-end systems
  • Reduces the execution time of the lambda
  • Guarantees that functions will reference the latest data after cache expiry

lambda-cache is purpose-built for AWS Lambda functions and prioritizes simplicity as our design goal. It currently supports SSM Parameters, Secrets from Secrets Manager, and S3 Objects.

Installation

Include the package in your function zip-file artifact using:

$ pip install lambda-cache -t /path/of/function

Refer to the installation guide for other options.

Usage

The official user guide has more info.

SSM — Parameter Store

Cache single parameter

To cache a parameter from SSM, decorate your handler function like so:

from lambda_cache import ssm@ssm.cache(parameter='/production/app/var')
def handler(event, context):
var = getattr(context,'var')
response = do_something(var)
return response

All invocations of this function over in the next minute will reference the parameter from the function’s internal cache, rather than making a network call to SSM. After one minute has lapsed, the next invocation will invoke get_parameter to refresh the cache. The parameter value will be injected into the context object of your lambda handler for retrieval.

Change cache expiry

The default max_age_in_seconds settings are 60 seconds (1 minute), it defines the maximum age of a parameter that is acceptable to the handler function. Cache entries older than this will be refreshed. To set a longer cache duration (e.g 5 minutes), change the setting:

from lambda_cache import ssm@ssm.cache(parameter='/production/app/var', max_age_in_seconds=300)
def handler(event, context):
var = getattr(context,'var')
response = do_something(var)
return response

Note: The caching logic runs only at invocation, regardless of how long the function runs. A 15-minute lambda function will not refresh the parameter unless explicitly refreshed using get_entry the method (described later). The library is primarily interested in caching 'across' invocations rather than 'within' an invocation

Change cache entry settings

The default name of the parameter is the string after the last slash(‘/’) character of its name. This means /production/app/var and test/app/var both resolve to just var. To override this default, use the entry_name a setting like so:

from lambda_cache import ssm@ssm.cache(parameter='/production/app/var', entry_name='new_var')
def handler(event, context):
var = getattr(context,'new_var')
response = do_something(var)
return response

Cache multiple parameters

To cache multiple entries at once, pass a list of parameters to the parameter argument. This method groups all the parameter values in one python dictionary, stored in the Lambda Context under the entry_name.

Note: When using this method, entry_name is a required parameter, if not present a NoEntryNameError the exception is thrown.

from lambda_cache import ssm@ssm.cache(parameter=['/app/var1', '/app/var2'], entry_name='parameters')
def handler(event, context):
var1 = getattr(context,'parameters').get('var1')
var2 = getattr(context,'parameters').get('var2')
response = do_something(var)
return response

Under the hood, we use the get_parameters API call for boto3, which translates to a single network call for multiple parameters. You can group all parameters types in a single call, including String, StringList and SecureString. StringList will return as a list, while all other types will return as plain-text strings. The library does not support returning SecureString parameters in encrypted form, and will only return plain-text strings regardless of String type.

Note: for this method to work, ensure you have both ssm:GetParameter and ssm:GetParameters (with the 's' at the end) in your function's permission policy

Decorator stacking

If you wish to cache multiple parameters with different expiry times, stack the decorators. In this example, var1 will be refreshed every 30 seconds, var2 will be refreshed after 60.

@ssm.cache(parameter='/production/app/var1', max_age_in_seconds=30)
@ssm.cache(parameter='/production/app/var2', max_age_in_seconds=60)
def handler(event, context):
var1 = getattr(context,'var1')
var2 = getattr(context,'var2')
response = do_something(var)
return response

Note: Decorator stacking performs one API call per decorator, which might result is slower performance

Cache invalidation

If you require a fresh value at some point of the code, you can force a refresh using the ssm.get_entry function, and setting the max_age_in_seconds the argument to 0.

from lambda_cache import ssm@ssm.cache(parameter='/prod/var')
def handler(event, context):
if event.get('refresh'):
# refresh parameter
var = ssm.get_entry(parameter='/prod/var', max_age_in_seconds=0)
else:
var = getattr(context,'var')

response = do_something(var)
return response

You may also use ssm.get_entry to get a parameter entry from anywhere in your functions code.

To only get the parameter once in the lifetime of the function, set max_age_in_seconds it to some arbitrarily large number ~36000 (10 hours).

Return Values

Caching supports String, SecureString and StringList parameters with no change required (ensure you have kms:Decrypt permission for SecureString). For simplicity, StringList parameters are automatically converted into a list (delimited by a comma), while String and SecureString both return the single string value of the parameter.

Secrets Manager

Cache single secret

Secret support is similar but uses the secret.cache decorator.

from lambda_cache import secrets_manager@secrets_manager.cache(name='/prod/db/conn_string')
def handler(event, context):
conn_string = getattr(context,'conn_string')
return context

Change Cache expiry

The default max_age_in_seconds settings are 60 seconds (1 minute), it defines how long a parameter should be kept in the cache before it is refreshed from SSM. To configure longer or shorter times, modify this argument like so:

from lambda_cache import secrets_manager@secrets_manager.cache(name='/prod/db/conn_string', max_age_in_seconds=300)
def handler(event, context):
var = getattr(context,'conn_string')
response = do_something(var)
return response

Note: The caching logic runs only at invocation, regardless of how long the function runs. A 15-minute lambda function will not refresh the parameter unless explicitly refreshed using get_cache_ssm. The library is primarily interested in caching ‘across’ invocation rather than ‘within’ an invocation

Change Cache entry settings

The name of the secret is simply shortened to the string after the last slash(‘/’) character of the secret’s name. This means /prod/db/conn_string and /test/db/conn_string resolves to just conn_string. To override this default, use entry_name:

from lambda_cache import secrets_manager@secrets_manager.cache(name='/prod/db/conn_string', entry_name='new_var')
def handler(event, context):
var = getattr(context,'new_var')
response = do_something(var)
return response

Decorator stacking

If you wish to cache multiple secrets, you can use decorator stacking.

@secrets_manager.cache(name='/prod/db/conn_string', max_age_in_seconds=30)
@secrets_manager.cache(name='/prod/app/elk_username_password', max_age_in_seconds=60)
def handler(event, context):
var1 = getattr(context,'conn_string')
var2 = getattr(context,'elk_username_password')
response = do_something(var)
return response

Note: Decorator stacking performs one API call per decorator, which might result is slower performance.

Cache Invalidation

To invalidate a secret, use the, setting the max_age_in_seconds=0.

from lambda_cache import secrets_manager@secrets_manager.cache(name='/prod/db/conn_string')
def handler(event, context):
try:
response = db_connect()
except AuthenticationError:
var = secrets_manager.get_entry(name='/prod/db/conn_string', max_age_in_seconds=0)
response = db_connect()
return response

Return Values

Secrets Manager supports both string and binary secrets. For simplicity we will cache the secret in the format it is stored. It is up to the calling application to process the return as Binary or Strings.

S3

S3 support is considered experimental for now, but within the python community, we see a lot of folks pull down files from S3 for use in AI/ML models.

Files downloaded from s3 are automatically stored in the /tmp directory of the lambda function. This is the only writable directory within lambda and has 512MB of storage space.

Cache a single file

To download a file from S3 use the same decorator pattern:

from lambda_cache import s3@s3.cache(s3Uri='s3://bucket_name/path/to/object.json')
def s3_download_entry_name(event, context):
# Object from S3 automatically saved to /tmp directory
with open("/tmp/object.json") as file_data:
status = json.loads(file_data.read())['status']
return status

Change Cache expiry

The default max_age_in_seconds settings are 60 seconds (1 minute), it defines how long a file should be kept in /tmp before it is refreshed from S3. To configure longer or shorter times, modify this argument like so:

from lambda_cache import s3@s3.cache(s3Uri='s3://bucket_name/path/to/object.json', max_age_in_seconds=300)
def s3_download_entry_name(event, context):
with open("/tmp/object.json") as file_data:
status = json.loads(file_data.read())['status']
return status

Note: The caching logic runs only at invocation, regardless of how long the function runs. A 15-minute lambda function will not refresh the object unless explicitly refreshed using s3.get_entry. The library is primarily interested in caching 'across' invocation rather than 'within' an invocation

Check the file before download

By default, lambda_cache will download the file once at cache has expired, however, to save on network bandwidth (and possibly time), we can set the check_before_download parameter to True. This will check the age of the object in S3 and download only if the object has changed since the last download.

from lambda_cache import s3@s3.cache(s3Uri='s3://bucket_name/path/to/object.json', max_age_in_seconds=300, check_before_download=True)
def s3_download_entry_name(event, context):
with open("/tmp/object.json") as file_data:
status = json.loads(file_data.read())['status']
return status

Note: we use the GetHead object call to verify the objects last_modified_date. This simplifies the IAM policy of the function, as it still only requires the s3:GetObject permission. However, this is still a GET request and will be charged as such, for smaller objects it might be cheaper to just download the object

Credit

Thanks to :

--

--

A.T.M Ruhul Amin
A.T.M Ruhul Amin

Written by A.T.M Ruhul Amin

Tech Lead | Java | Spring Boot | Python | React | Angular | Serverless | AWS Certified | AWS Community Builder | GitHub Link : https://github.com/ruhulmus